
Technical white paper
IBM Cloud July 2018

Contents

1 	 Executive summary

2 Integration Has Changed

2 The Journey So Far – SOA,
 ESBs and APIs

3 The Case for Agile Integration
 Architecture

3 Aspect 1: Fine-grained
 Integration Deployment

4 Aspect 2: Decentralized
 integration ownership

5 	 Aspect 3: Cloud-native
 integration infrastructuren

5 	 How has the modern integration
 runtime changed to
 accommodate agile integration
 architecture?

6	 Agile Integration Architecture for
 the Integration Platform

11	 The IBM Cloud Integration
 Platformn

Agile Integration
Architecture
Container-Based and Microservices-Aligned
Lightweight Integration Runtimes

Embrace digital transformation with agile integration centered around
an equally agile approach, giving you the ability to move quickly to
meet the demands of multicloud, decentralization and microservices.

Executive summary
Organizations pursuing digital transformation must embrace new
ways to use and deploy integration technologies, so they can move
quickly in a manner appropriate to the goals of multicloud, decentralization
and microservices. The application integration layer must transform to
allow organizations to move boldly in building new customer experiences,
rather than forcing models for architecture and development that pull
away from maximizing the organization’s productivity.

Many organizations have started embracing agile application techniques
such as microservices architecture and are now starting to see the
benefits of that shift. This approach compliments and accelerates an
enterprise’s API strategy. Businesses should also seek to use this
approach to modernize their existing ESB infrastructure to achieve
more effective ways to manage and operate their integration services
in their private or public cloud.

This white paper is derived from a book that explores the merits of
what we refer to as agile integration architecture-a container-based,
decentralized and microservices - aligned approach for integration
solutions that meets the demands of agility, scalability and resilience
required by digital transformation.

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=15017915USEN&

Technical white paper
IBM Cloud

2

Integration Has Changed
IDC estimates that spending on digital transformation
initiatives will represent a $20 trillion market opportunity
over the next 5 years1.What’s behind this staggering
explosion of spending? The ever-present, ever-growing need
to build new customer experiences through connected
experiences across a network of applications that leverage
data of all types.

That’s no easy task – bringing together processes and
information sources at the right time and in the right context
is difficult at best, particularly when you consider the
aggressive adoption of SaaS business applications. New data
sources need to be injected into business processes to create
competitive differentiation.

•	 Innovation through data – Applications owe much of their
innovation to their opportunity to combine data beyond
their boundaries and create meaning from it, a trait
particularly visible in microservices architecture.

•	 Enterprise-grade artifacts – Integration flows inherit a
tremendous amount of value from the runtime, which
includes enterprise-grade features for error recovery, fault
tolerance, log capture, performance analysis, and much more.

The integration landscape is changing to keep up with
enterprise and marketplace computing demands, but how
did we get from SOA and ESBs to modern, containerized,
agile integration architecture?

The Journey so Far – SOA, ESBs and APIs
Before we can look forward to the future of agile integration,
we need to understand what came before. SOA (Service
Oriented Architecture) patterns emerged at the start of the
millennium, and at first the wide acceptance of the standards
SOA was built upon heralded a bright future where every
system could discover and talk to any other system via
synchronous exposure patterns.

Fast forward a bit and you will find yourself right in the middle
of the ESB (Enterprise Service Bus) movement – a technology
that was supposed to provide connectivity to backend systems,
coming from the preceding hub-and-spoke pattern. While
many enterprises successfully implemented
the ESB pattern, the term isn’t exactly feeling the love from
cloud-native space. It’s seen as heavyweight and lacking in
agility. How did we go from one extreme to another?

The truth boils down to a few, often interrelated, factors:

•	 SOA was more complex than just the implementation
of an ESB, particularly around who would fund an
enterprise-wide program.

•	 ESB patterns formed a single infrastructure for the whole
enterprise, with tens or hundreds of integrations installed
on a production server cluster. Although heavy
centralization isn’t required by the ESB pattern, the
resulting topologies almost always fell prey to it.

The Value of Application Integration for
Digital Transformation
When you consider your agenda for building new customer
experiences and focus on how data is accessed and made
available for the services and APIs that power these initiatives,
you can see several significant benefits that application
integration brings to the table:

•	 Effectively addressing disparity – Access data from any
system in any format and build homogeneity from it, no
matter how diverse your multicloud landscape grows.

•	 Expertise of the endpoints – Modern integration includes
smarts around complex protocols and data formats, but it also
incorporates intelligence about the actual objects, business
and functions within the end systems.

“To drive new customer experiences
organizations must tap into an
ever-growing set of applications, processes
and information sources – all which
significantly expand the enterprise’s
need for and investment in integration
capabilities.”

 1IDC MaturityScape Benchmark: Digital Transformation Worldwide, 2017,
 Shawn Fitzgerald. Golluscio.

Technical white paper
IBM Cloud

3

•	 Centralized ESB patterns often failed to deliver the
significant savings companies were hoping for, since interfaces
could not be re-used from one project to another.

•	 Cross-enterprise initiatives like ESB struggled to find
funding, and often that funding only applied to services
that would be reusable enough to cover their creation cost.

2.	 Elastic scalability – Their resource usage can be fully
 tied into the business model.

3.	Discrete resilience – With suitable decoupling, changes
 to one microservice do not affect others at runtime.

With those benefits in mind, what would it look like if
we reimagined integration, which is typically deployed
in centralized silos, with a new perspective based on
microservices architecture? That’s what we call
“agile integration architecture.”

The result was that creation of services by this specialist SOA
team became a bottleneck for projects rather than the enabler
that it was intended to be. This typically gave the centralized
ESB pattern a bad name by association.

Service-oriented architecture as applied to ESB patterns is an
enterprise-wide initiative to create re-usable, synchronously
available services and APIs, such that new applications can be
created more quickly incorporating data from other systems.

Microservices architecture, on the other hand, is an option
for how you might choose to write an individual application
in a way that makes that application more agile, scalable,
and resilient.

The Case for Agile Integration
Architecture
Why have microservices concepts become so popular in the
application space? They represent an alternative approach to
structuring applications. Rather than an application being a
large silo of code running on the same server, the application
is designed as a collection of smaller, completely
independently-running components.

Microservices architecture enables three critical benefits:

1.	 Greater agility – Microservices are small enough to be
 understood completely in isolation and changed independently.

ESB patterns have had issues ensuring
continued funding for cross-enterprise
initiatives since those do not apply specifically
within the context of a business initiative. Agile integration architecture is defined

as “a container-based, decentralized and
microservices-aligned architecture for
integration solutions.”

There are three related, but separate aspects to agile
integration architecture:

Aspect 1: Fine-grained integration deployment.
What might we gain by breaking out the integrations in the
siloed ESB into separate runtimes?

Aspect 2: Decentralized integration ownership.
How should we adjust the organizational structure to better
leverage a more fine-grained approach?

Aspect 3: Cloud native integration infrastructure.
What further benefits could we gain by a fully cloud-native
approach to integration.

Aspect 1:
Fine-grained Integration Deployment

The centralized deployment of integration hub or ESB
patterns where all integrations are deployed to a single
heavily nurtured (HA) pair of integration servers has been
shown to introduce a bottleneck for projects. Any deployment
to the shared servers runs the risk of destabilizing existing
critical interfaces. No individual project can choose to
upgrade the version of the integration middleware to gain
access to new features.

Technical white paper
IBM Cloud

4

Figure 1: Simplified comparison of a centralized ESB to fine-grained integration deployment

Consumers

Centralized ESB Fine-grained integration
deployment

Integrations

Providers

Fine-grained integration deployment draws on the benefits
of a microservices architecture. Let’s revisit what we listed
as microservices benefits in light of fine-grained
integration deployment:

•	 Agility – Different teams can work on integrations
independently without deferring to a centralized group
or infrastructure that can quickly become a bottleneck.
Individual integration flows can be changed, rebuilt, and
deployed independently of other flows, enabling safer
application of changes and maximizing speed to production.

•	 Scalability – Individual flows can be scaled on their own,
allowing you to take advantage of efficient elastic scaling
of cloud infrastructures.

•	 Resilience – Isolated integration flows that are deployed in
separate containers cannot affect one another by stealing
shared resources, such as memory, connections, or CPU.

When you think about agility, scalability and resilience, it’s
important to remember that you can’t achieve these benefits
of fine-grained integration without decentralized integration.

Learn so much more about fine-grained integration in our book
Agile Infrastructure Architecture, available now for download!

Aspect 2: Decentralized integration
ownership
A significant challenge faced by service-oriented architecture
was the way that it tended to force the creation of central
integration teams, and infrastructure to create the service layer.

This created ongoing friction in the pace at which projects
could run since they always had the central integration team
as a dependency. The central team knew their integration
technology well, but often didn’t understand the applications
they were integrating, so translating requirements could be
slow and error prone.

We could break up the enterprise-wide ESB component into smaller, more manageable and dedicated pieces. Perhaps in some
cases we can even get down to one runtime for each interface we expose. These “fine-grained integration deployment” patterns
provide specialized, right-sized containers, offering improved agility, scalability and resilience, and look very different to the
centralized ESB patterns of the past. Figure1 demonstrates in simple terms how a centralized ESB differs from fine-grained
integration deployment.

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=15017915USEN&
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=15017915USEN&

Technical white paper
IBM Cloud

5

Many organizations would have preferred the application
teams own the creation of their own services, but the
technology and infrastructure of the time didn’t enable that.

The move to fine-grained integration deployment opens a
door such that ownership of the creation and maintenance
of integrations can be distributed. It’s not unreasonable for
business application teams to take on integration work,
streamlining the implementation of new capabilities.

Piqued your curiosity about fine-grained integration deployment?
Answer your question with our Agile Infrastructure
Architecture book, available now!

Aspect 3: Cloud-native integration
infrastructure
Integration runtimes have changed dramatically in recent
years. So much so that these lightweight runtimes can be
used in truly cloud-native ways. By this we are referring to
their ability to hand off the burden of many of their
previously proprietary mechanisms for cluster management,
scaling, availability and to the cloud platform in which they
are running.

This entails a lot more than just running them in a
containerized environment. It means they have to be able
to function as “cattle not pets,” making best use of the
orchestration capabilities such as Kubernetes and many other
common cloud standard frameworks.

How has the modern integration runtime
changed to accommodate agile
integration architecture?
Clearly, agile integration architecture requires that the
integration topology be deployed very differently. A key
aspect of that is a modern integration runtime that can be
run in a container-based environment and is well suited to
cloud-native deployment techniques. Modern integration
runtimes are almost unrecognizable from their historical
peers. Let’s have a look at some of those differences:

•	 Fast lightweight runtime: They run in containers such
as Docker and are sufficiently lightweight that they can be
started and stopped in seconds and can be easily administered
by orchestration frameworks such as Kubernetes.

•	 Dependency free: They no longer require databases or
message queues, although obviously, they are very adept
at connecting to them if they need to.

•	 File system based installation: They can be installed
simply by laying their binaries out on a file system and
starting them up−ideal for the layered file systems of
Docker images.

•	 DevOps tooling support: The runtime should be
continuous integration and deployment−ready. Script and
property file-based install, build, deploy, and configuration
to enable “infrastructure as code” practices. Template
scripts for standard build and deploy tools should be
provided to accelerate inclusion into DevOps pipelines.

•	 API-first: The primary communication protocol should
be RESTful APIs. Exposing integrations as RESTful APIs
should be trivial and based upon common conventions such
as the Open API specification. Calling downstream
RESTful APis should be equally trivial, including discovery
via definition files.

•	 Digital connectivity: In addition to the rich enterprise
connectivity that has always been provided by integration
runtimes, they must also connect to modern resources.
For example, NoSQL databases (MongoDb and Cloudant
etc.), and messaging services such as Kafka. Furthermore,
they need access to a rich catalogue of application
intelligent connectors for SaaS (software as a service)
applications such as Salesforce.

Adopting a “cattle approach” impacts the
ways in which your DevOps teams will
interact with the environment and the
solution overall, create increasing efficiencies
as more solutions are moved to
lightweight architectures.

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=15017915USEN&
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=15017915USEN&

Technical white paper
IBM Cloud

6

•	 Continuous delivery: Continuous delivery is enabled by
command-line interfaces and template scripts that mesh
into standard DevOps pipeline tools. This further reduces
the knowledge required to implement interfaces and
increases the pace of delivery.

•	 Enhanced tooling: Enhanced tooling for integration
means most interfaces can be built by configuration alone,
often by individuals with no integration background. With
the addition of templates for common integration patterns,
integration best practices are burned into the tooling,
further simplifying the tasks. Deep integration specialists
are less often required, and some integration can potentially
be taken on by application teams as we will see in the next
section on decentralized integration.

Modern integration runtimes are well suited to the three
aspects of agile integration architecture: fine-grained
deployment, decentralized ownership, and true cloud-
native infrastructure.

Want an even deeper dive into cloud-native infrastructure?
Download our Agile Integration Architecture book now!

Agile Integration Architecture for the
Integration Platform
Throughout this paper, we have been focused on the
application integration features as deployed in an agile
integration architecture. However, many enterprise solutions
can only be solved by applying several critical integration
capabilities. An integration platform (or what some analysts
refer to as a “hybrid integration platform”) brings together
these capabilities so that organizations can build business
solutions in a more efficient and consistent way.

Many industry specialists agree on the value of this
integration platform. Gartner notes:

The hybrid integration platform (HIP) is a framework of
on-premises and cloud-based integration and governance
capabilities that enables differently skilled personas (integration
specialists and nonspecialists) to support a wide range of
integration use cases.… Application leaders responsible for
integration should leverage the HIP capabilities framework to
modernize their integration strategies and infrastructure, so
they can address the emerging use cases for digital business2.

One of the key things that Gartner notes is that the integration
platform allows multiple people from across the organization to
work in user experiences that best fits their needs. This means
that business users can be productive in a simpler experience
that guides them through solving straightforward problems,
while IT specialists have expert levels of control to deal with
the more complex enterprise scenarios. These users can then
work together through reuse of the assets that have been
shared; while preserving governance across the whole.

Satisfying the emerging use cases of the digital transformation
is as important as supporting the various user communities.
The bulk of this paper will explore these emerging use cases,
but first we should further elaborate on the key capabilities
that must be part of the integration platform.

The IBM Cloud Integration Platform
IBM Cloud Integration brings together the key set of integration
capabilities into a coherent platform that is simple, fast and
trusted. It allows you to easily build powerful integrations and
APIs in minutes, provides leading performance and scalability,
and offers unmatched end-to-end capabilities with
enterprise-grade security.

Within the IBM Cloud Integration platform, we have
coupled the six key integration specialties each a
best-of-breed feature. These are:

API Management:
Exposes and manages business services as reusable APIs for select
developer communities both internal and external to your
organization. Organizations adopt an API strategy to accelerate
how effectively they can share their unique data and services
assets to then fuel new applications and new business opportunities.

Security Gateway:
Extend Connectivity and Integration beyond the enterprise with
DMZ-ready edge capabilities that protect APIs, the data they
move, and the systems behind them

Application Integration:
Connects applications and data sources on-premises or in the
cloud, in order to coordinate exchange business information
so that data is available when and where needed.

 2Hype Cycle for Application Infrastructure and Integration, 2017, Elizabeth

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=15017915USEN&

Technical white paper
IBM Cloud

7

Messaging:
Ensures real-time information is available from anywhere
at anytime by providing reliable message delivery without
message loss, duplication or complex recovery in the event
of system or network issue.

Data Integration:
Accesses, cleanses and prepares data to create a consistent
view of your business within a data warehouse or data lake
for the purposes of analytics.

High Speed Transfer:
Move huge amounts of data between on-premises and cloud
or cloud-to-cloud rapidly and predictably with enhanced
levels of security. Facilitates how quickly organizations can
adopt cloud platforms when data is very large.

Through this teaser white paper, hopefully you’ve gotten a
broader perspective of the various critical capabilities required
as part of an integration platform, a sense of the requirements
for those capabilities to work together, and an appreciation of
how the agile integration architecture can be adopted to enable
greater agility, scalability and resilience for the platform.

Make sure to download the comprehensive e-book to learn even more about agile integration architecture.

Figure 2: The IBM Cloud Integration Platform

IBM Cloud Integration Platform

Premier Integration Experience

API Lifecycle Security
Gateway

Application
Integration

Messaging
& Events

Data
Integration

High Speed
Transfer

Analytics | Security | Governance

OnCloud | Hybrid | On Premises

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=15017915USEN&

© Copyright IBM Corporation 2018

IBM Corporation
Global Technology Services
Route 100
Somers, NY 10589

Produced in the United States of America
August 2018

IBM, the IBM logo, ibm.com, iSeries, Power, System Storage,
zEnterprise, TDMF, AIX, BladeCenter and pSeries are trademarks of
International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM
or other companies. A current list of IBM trademarks is available on the
web at “Copyright and trademark information” at 	
www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both.

Microsoft, Windows and Windows NT are trademarks of Microsoft
Corporation in the United States, other countries, or both.

The content in this document (including currency OR pricing references
which exclude applicable taxes) is current as of the initial date of publication
and may be changed by IBM at any time. Not all offerings are available in
every country in which IBM operates.

The performance data and client examples cited are presented for
illustrative purposes only. Actual performance results may vary depending
on specific configurations and operating conditions.

It is the user’s responsibility to evaluate and verify the operation of any
other products or programs with IBM products and programs.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted according
to the terms and conditions of the agreements under which they
are provided.

Actual available storage capacity may be reported for both uncompressed
and compressed data and will vary and may be less than stated.

xxxxxx-USEN-00

Please Recycle

http://www.ibm.com/legal/copytrade.shtml

